177 research outputs found

    Ray-Optics Simulations of Outdoor-to-Indoor Multipath Channels at 4 and 14 GHz

    Get PDF
    Radio wave propagation simulations based on the ray-optical approximation have been widely adopted in coverage analysis for a range of situations, including the outdoor-to-indoor (O2I) scenario. In this work we present O2I ray-tracer simulations utilizing a complete building floor plan in the form of a point cloud. The ray-tracing simulation results are compared to measured channels at 4 and 14 GHz in terms of large scale parameters, namely path loss, delay spread and angular spread. In this work we address the importance of 1) interior walls and propagation paths originating therein, and 2) site-specific knowledge of window structure in accurately reproducing the O2I channel, particularly the presence of a thin insulating metal film on the windows. The best agreement between measurements and simulations was observed for the most detailed simulation. For both frequencies a mean error of less than 1.5 dB is reached for path loss, and a relative error of less than 10% for delay and angular spreads. Not including the metal film in simulations increases error of estimated building entry loss considerably, whereas absence of interior walls is detrimental to reproduction of large scale parameters

    Robust User Scheduling with COST 2100 Channel Model for Massive MIMO Networks

    Get PDF
    The problem of user scheduling with reduced overhead of channel estimation in the uplink of massive multiple-input multiple-output (MIMO) systems has been investigated. The authors consider the COST 2100 channel model. In this paper, they first propose a new user selection algorithm based on knowledge of the geometry of the service area and location of clusters, without having full channel state information at the BS. They then show that the correlation in geometry-based stochastic channel models (GSCMs) arises from the common clusters in the area. In addition, exploiting the closed-form Cramer–Rao lower bounds, the analysis for the robustness of the proposed scheme to cluster position errors is presented. It is shown by analysing the capacity upper bound that the capacity strongly depends on the position of clusters in the GSCMs and users in the system. Simulation results show that though the BS receiver does not require the channel information of all users, by the proposed geometry-based user scheduling algorithm the sum rate of the system is only slightly less than the well known greedy weight clique scheme

    Optimal Transmission Scheduling for a Hybrid of Full- and Half-Duplex Relaying

    Get PDF
    Full-duplex relaying (FDR), i.e., simultaneous transmission and reception using the same frequency channel at a radio relay, can be used to achieve a spectral efficiency higher than that in the case of half-duplex relaying (HDR) if loop-back interference is well-managed. To achieve spectral efficiency that is higher than that achieved when using FDR and HDR separately, an optimal transmission-scheduling scheme for an FDR-HDR hybrid is proposed. The scheme is formulated as an optimization problem. The conditions required to achieve the maximum spectral efficiency are determined analytically. Numerical results confirm that the proposed scheme is superior to FDR and HDR

    On mm-Wave Multi-path Clustering and Channel Modeling

    Get PDF
    Efficient and realistic mm-wave channel models are of vital importance for the development of novel mm-wave wireless technologies. Though many of the current 60 GHz channel models are based on the useful concept of multi-path clusters, only a limited number of 60 GHz channel measurements have been reported in the literature for this purpose. Therefore, there is still a need for further measurement based analyses of multi-path clustering in the 60 GHz band. This paper presents clustering results for a double-directional 60 GHz MIMO channel model. Based on these results, we derive a model which is validated with measured data. Statistical cluster parameters are evaluated and compared with existing channel models. It is shown that the cluster angular characteristics are closely related to the room geometry and environment, making it infeasible to model the delay and angular domains independently. We also show that when using ray tracing to model the channel, it is insufficient to only consider walls, ceiling, floor and tables; finer structures such as ceiling lamps, chairs and bookshelves need to be taken into account as well

    Electromagnetic-Thermal Analyses of Distributed Antennas Embedded into a Load Bearing Wall

    Get PDF
    The importance of indoor mobile connectivity has increased during the last years, especially during the Covid-19 pandemic. In contrast, new energy-efficient buildings contain structures like low-emissive windows and multi-layered thermal insulations which all block radio signals effectively. To solve this problem with indoor connectivity, we study passive antenna systems embedded in walls of low-energy buildings. We provide analytical models of a load bearing wall along with numerical and empirical evaluations of wideband back-to-back antenna spiral antenna system in terms of electromagnetic- and thermal insulation. The antenna systems are optimized to operate well when embedded into load bearing walls. Unit cell models of the antenna embedded load bearing wall, which are called signal-transmissive walls in this paper, are developed to analyze their electromagnetic and thermal insulation properties. We show that our signal-transmissive wall improves the electromagnetic transmission compared to a raw load bearing wall over a wide bandwidth of 2.6-8 GHz, covering most of the cellular new radio frequency range 1, without compromising the thermal insulation capability of the wall demanded by the building regulation. Optimized antenna deployment is shown with 22 dB improvement in electromagnetic transmission through the load bearing wall.Comment: 9 pages, 13 figures, submitted to IEEE Transactions on Antennas and Propagatio
    • 

    corecore